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LETTER TO THE EDITOR

Study of chirality in the two-dimensional XY spin glass

H S Bokil and A P Young
Department of Physics, University of California, Santa Cruz, CA 95064, USA

Received 4 December 1995

Abstract. We study the chirality in the Villain form of theXY spin glass in two dimensions by
Monte Carlo simulations. We calculate the chiral-glass correlation length exponentνCG and find
that νCG = 1.8± 0.3 in reasonable agreement with earlier studies. This indicates that the chiral
and phase variables are decoupled on long length scales and diverge asT → 0 with different
exponents, since the spin-glass correlation length exponent was found, in earlier studies, to be
about 1.0.

Ever since Villain [1] pointed out the existence of a discrete reflection symmetry (in addition
to the ordinary rotation) in frustrated vector spin systems, there has been considerable interest
in the similarity or difference between the behaviour of the variables corresponding to these
two symmetries—chiralities (which are quenched in vortices), corresponding to reflection,
and spins, corresponding to rotation. In part this interest comes from the observation that
spin glasses seem to be in the Ising universality class, though many of them should be
described quite well by a Heisenberg model. This has led to speculations that chiralities
and spins order differently and that the Ising behaviour seen in experiments might indicate
the existence of a chiral-glass phase in the absence of spin-glass ordering [2]. This view
is supported by some numerical simulations [3, 4]. However, in spite of many studies, the
problem still remains controversial.

Kawamura and Tanemura [3] studied the two-dimensionalXY spin glass by a domain
wall renormalization group technique and were the first to present evidence that the chiral
and spin-glass correlation length exponents are different in two dimensions. They also
reported Monte Carlo simulations which supported their claim [3]. A little later, Ray and
Moore [4] also reported Monte Carlo results which indicated that in two dimensions the
chiral and spin-glass correlation length exponents were indeed different. They estimated
νSG ' 1.0 andνCG ' 2.0, the former result being in good agreement with the earlier work
of Jain and Young [5]. More recently, Kawamura [6] reported Monte Carlo simulations of
the three-dimensionalXY spin glass and claimed that there is indeed a stable chiral-glass
phase. This would appear to have settled the issue. However, recent analytic work on
the one-dimensional ladder lattice [7], and on the two-dimensional system with a special
choice of disorder [8], points in the opposite direction. Given this controversy it seems a
reasonable time to study the two-dimensional system numerically once again.

The earlier work used a representation of the model in terms of the phases of theXY

model, see equation (2) below, and vortices are expressed in terms of correlations of the
phases around an elementary square. However, vortices are only well defined when the
nearest-neighbour spin–spin correlation function is large, which means that the temperature
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is already quite low. It is therefore difficult to study vortex correlations over a large range
of temperature. In our work, we use a different representation of the model, expressed
directly in terms of the vortices themselves. As a result it is possible to study the vortex
correlations over a larger range of temperature than before.

The model used in the simulations is anXY spin glass in which the interactions,Jll′ ,
have values±J . The Hamiltonian is

H = −
∑
〈l,l′〉

Jll′Sl · Sl′ (1)

where theSi are two component vectors of unit length. This can also be written as

H = −J
∑
〈l,l′〉

cos(φl − φl′ − All′) (2)

whereφl is the angle (phase) theXY spin makes with a fixed direction, and theAll′ take
values 0 andπ with equal probability, corresponding toJll′ = 1 and−1, respectively. We
take the sites,l, to lie on a square lattice of sizeL × L, and the interaction is between all
nearest-neighbour pairs, counted once.

As discussed above, it is easier to study the model in terms of vortices. To do so we
first replace the cosine in equation (2) by the Villain periodic Gaussian function, i.e.

H =
∑
〈l,l′〉

V (φl − φl′ − All′) (3)

where

exp

(−V (x)

T

)
=

∞∑
m=−∞

exp

(−J (x − 2πm)2

2T

)
(4)

in units where Boltzmann’s constant is unity. Performing standard manipulations [9, 10]
one finds that the partition function of the Hamiltonian in equation (3) is the same (apart
from an unimportant smoothly varying prefactor) as that of the following Hamiltonian:

HV = − 1
2

∑
i,j

(ni − bi)G(i − j)(nj − bj ) (5)

where the vortices{ni} run over all integer values, subject to the ‘charge neutrality’ constraint∑
i

ni = 0 (6)

andG(i − j) is the vortex interaction,

G(i − j)

(2π)2
= J

N

∑
k 6=0

1 − exp[ik · (ri − rj )]

4 − 2 coskx − 2 cosky

. (7)

Note that the Fourier transform of the vortex interaction is∼ k−2 for small k which
corresponds to a long-range logarithmic interaction in real space. The vortices sit on the
sitesi of the dual lattice which are in the centres of the squares of the original lattice. The
bi are given by (1/2π ) times the directed sum of the quenched random variables,All′ , on
the links of the original lattice which surround the sitei of the dual lattice. They satisfy a
constraint similar to equation (6),∑

i

bi = 0. (8)

From now on we set the interaction strength,J , to be unity.
ForAll′ = 0 orπ there are two kinds of plaquettes on the original lattice, or equivalently

two kinds of sites on the dual lattice: there are unfrustrated sites, on whichbi is integer,
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and frustrated sites, on whichbi is half-integer. IfAll′ has equal probability to take values
0 andπ , then half the sites on the dual lattice will be frustrated and half unfrustrated on
average. In the ground state, most unfrustrated sites will haveni = 0, while most frustrated
sites will haveni = ±1/2. These Ising-like variables are precisely the chirality variables
of Villain. It seems reasonable that the essential physics will be preserved if one just keeps
these chirality variables, i.e. one fixesni to be zero on the unfrustrated sites and only
allowsni to be±1/2 on the frustrated sites. Thus one has an Ising model with a long range
antiferromagnetic coupling,

HCG = − 1
2

∑
i,j

G̃(i − j)σiσj εiεj (9)

where, for convenience, we represent the chiralities by Ising spins,σi , of unit length so
σi = ±1, and the interaction,̃G, is then equal toG/4. The quenched variableεi is equal to
1 if there is a chirality on sitei, and is equal to 0 if there is no chirality. The lattice sites
with chirality are to be chosen at random with 50% probability. We impose the additional
constraint that the total number of chiralities isexactly half the number of lattice sites.
Defining N to be the number of chiralities we have, forevery sample,

N = L2

2
. (10)

We now discuss the scaling theory and the details of our Monte Carlo simulations.
We run two independent replicas of the system in parallel with the same realization of the
disorder and compute the overlap between the states in the two replicas,

q = 1

N

N∑
i=1

σ
(1)
i σ

(2)
i . (11)

Here, and in the rest of this letter, the sum over sitesi andj on the dual lattice is only over
those sites occupied by a chirality. The standard spin-glass order parameter is just [〈q〉],
where the angular brackets denote the thermal averages and the square brackets the average
over disorder. Two useful quantities are the Binder moment ratiogCG and the chiral-glass
susceptibilityχCG defined by

gCG = 1

2

{
3 − [〈q4〉]

[〈q2〉]2

}
(12)

and

χCG = 1

N

∑
i,j

[〈σiσj 〉2]

= N [〈q2〉]. (13)

gCG is defined so that it tends to 0 at high temperatures in the thermodynamic limit, and
tends to unity asT → 0 if the ground state is non-degenerate. The chiral-glass susceptibility
should be contrasted with the spin-glass susceptibility,χSG, defined by

χSG = 1

L2

∑
l,l′

[〈cos(θl − θl′)〉2]

= L2
∑
α,β

[〈q2
αβ〉] (14)

where

qαβ = 1

L2

L2∑
l=1

S
(1)
l,αS

(2)
l,β . (15)
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Here α and β denote the components of theXY spins in equation (1) and take valuesx

andy.
Since the transition in this system is expected to be atT = 0 the following scaling

forms are expected forχCG and forgCG [12]:

gCG = g̃CG(L1/νCGT ) (16)

and

χCG = L2−ηCGχ̃CG(L1/νCGT ). (17)

Here the exponentνCG is the correlation length exponent andηCG is related to the ground-
state degeneracy—if the ground state is unique, one expectsηCG = 0. At a critical point,
the data forgCG should be independent of size. This is a particularly convenient way of
locating the transition. The spin-glass susceptibility in equation (14) has the finite size
scaling form

χSG = L2−ηSGχ̃SG(L1/νSGT ) (18)

with exponentsνSG and ηSG which are expected to bedifferent from the corresponding
chiral-glass exponents. In this paper, we just focus on the chiral-glass critical behaviour.

We use standard methods [12] to ensure equilibration of the Monte Carlo simulation.
Various quantities are computed both from overlaps between the two replicas and from a
single replica at different times, see Bhatt and Young [12] for details. Typically, for the
largest lattice sizes we needed about 100 000 Monte Carlo sweeps for equilibration at the
lowest temperature. For the averaging over disorder we took between 1000 and 10 000
samples. For most of the data points the statistical errors were estimated by averaging over
all the samples. However, for the largest lattice sizes and lowest temperatures we divided up
the samples into blocks of a few hundred each and calculated the errors from the standard
deviations of the quantities between different blocks. The results forgCG as a function of
temperature for different sizes are shown in figure 1 and the corresponding results forχCG

are in figure 2. The points atT = 0 are obtained by exact enumeration of all the states.

Figure 1. Results for the Binder moment ratio
gCG, defined in equation (12), for different sizes and
temperatures. The lines are guides to the eye.

Figure 2. A log–log plot of results for the chiral-
glass susceptibilityχCG, defined in equation (13), for
different sizes and temperatures. The lines are guides
to the eye.

We also calculated the ground-state degeneracy forL = 4 andL = 6 and found that
there is a small non-zero degeneracy, which leads togCG being slightly below 1 atT = 0.
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However,gCG increases slightly with increasing size, so we expect thatgCG will be unity
at T = 0 in the thermodynamic limit. One should note here that Ray and Moore [4],
who worked in the phase representation, also found thatgCG is not very sensitive to the
ground-state degeneracy, and seems to extrapolate to unity.

In order to do a finite size scaling analysis forgCG it is convenient to incorporate one
trivial correction to scaling. As defined in equation (12),gCG tends to 1/N (rather than 0)
as T → ∞, which is not completely negligible for the sizes studied here. We therefore
consider the following quantity:

g′
CG ≡ NgCG − 1

N − 1
= g̃CG(L1/νCGT ) (19)

which does vanish at high temperatures for finiteN (and tends to unity asT → 0 if gCG

does).
Figure 3 shows our finite size scaling plot forg′

CG, including data forT 6 0.55. Data
at higher temperatures did not scale well and are presumably not in the scaling region. It
is clear that good data collapse is obtained withνCG = 2.0. We tried scaling with other
values ofνCG and found that data collapse gets worse both forνCG > 2.0 and forνCG < 2.0.
Trying various values forνCG in this way we estimateνCG = 2.0 ± 0.2 from the data for
gCG in figure 3.

Figure 3. A scaling plot of the data in figure 1
according to equation (19). Data forT 6 0.55 have
been included.

Figure 4. A scaling plot of the data in figure 2
according to equation (20) withνCG = 1.5. The data
used in the plot are forT 6 0.55. This plotassumes
ηCG = 0, which is reasonable since theT = 0 results
indicate thatηCG is close to, and probably exactly equal
to, zero.

Just at it is convenient to put in the correction togCG in equation (19) in order that it
varies between 1 and 0 as the temperature changes, it is also useful to perform a similar
transformation forχCG. SinceχCG tends to unity asT → 0, we subtract unity. Furthermore,
our zero temperature data is consistent withηCG very close to zero so, from now on, we
will assume thatηCG = 0 and thatχCG = N at T = 0 in the thermodynamic limit. Hence
we will analyse

χ ′
CG ≡ χCG − 1

N − 1
= χ̃CG(L1/νCGT ) (20)

which varies between 1 and 0 asT increases.
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In figure 4 we show a finite size scaling plot forχ ′
CG, including data forT 6 0.55. The

best fit is forνCG = 1.5, somewhat lower than that obtained fromgCG. A similar difference
is also found in the three-dimensional Ising spin glass [13].

Combining our exponent estimates fromgCG andχCG we obtain

νCG = 1.8 ± 0.3 ηCG = 0.0 ± 0.2. (21)

These results indicate that the chiralities in the two-dimensionalXY spin glass order with
a correlation length exponentνCG which is different from the spin-glass correlation length
exponent, for which earlier work [4, 5] foundνSG ' 1. This conclusion is in agreement
with earlier results [3, 4]. In the future it would be useful to study thethree-dimensional
XY spin glass in the vortex representation to understand whether there is indeed a finite
temperature chiral-glass phase as found in the work of Kawamura [6].

One of us (HB) would like to thank Tanya Kurosky for useful discussions. This work is
supported by the NSF DMR–9411964.
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[10] Jośe J V, Kadanoff L P, Kirkpatrick S and Nelson D R 1977Phys. Rev.B 16 1217
[11] Fisher M P A, Tokuyasu T A and Young A P 1991Phys. Rev. Lett.66 2931
[12] Bhatt R N and Young A P 1988Phys. Rev.B 37 5606
[13] Kawashima N and Young A P 1995 cond-mat/9510009


